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ABSTRACT

In this report we summarize the research performed under the

ONR Grant N00014-75-C-0293 during the calendar years 1979 and 1980.

We describe a number of electromagnetic scattering problems which

we have solved using the spectral domain methods. Among these are

the frequency selective surfaces, leaky-wave antennas on dielectric

waveguides and arbitrarily shaped conducting or dielectric scatterers.
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I. INTRODUCTION

This research effort was to develop new approaches to solving electro-

magnetic and acoustic scattering problems in frequency regimes and for

geometrical configurations, for which the conventional numerical or

asymptotic techniques are found to be inadequate, inefficient and/or

inaccurate. Rather than employ either the matrix metod or the ray

techniques, which are typically valid in the low- ane " gh-frequency

regimes respectively, we investigate the application of the FFT algorithm

in the spectral or ransform domain. Two different variations of the

method have been studied. The first of these employed asymptotic

solutions, such as those based on the Physical Optics or GTD methods, as

initial approximations for an iterative procedure for constructing the

solution to the scattering problem. The second version of the spectral

techniqu. e utilized the variational principle and developed a procedure

called the spectral-Galerkin method. The end result of the application

of the latter method is a matrix equation for the coefficients of the

expansion functions used to repr.4nt the nknown field. Typically, the

size ef this matrix is much smaller Lhan the one obtained via conventional

procedures. Our objectives were to investigate these spectral domain

techniques in great detail and to evaluate the scope and limitations of

the two approaches.
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II. SUMMARY OF TECHNICAL ACCOMPLISHMENTS

During the last grant period, we have carried out an extensive

investigation of the spectral-Galerkin and spectral iteration techniques

and have applied them to the problem of analyzing a number of electromagnetic

radiation and scattering problems. We have applied the spectral approach

to the problem of scattering by frequency selective surfaces (FSS) which

find widespread use in radomes, reflector antennas, and optical filters.

The spectral iteration technique has been found useful in the low and inter-

mediate frequency ranges where the cell size or the period of the FSS, which

comprises a screen with periodic perforations, is on the order of two

wavelengths or less. Beyond this limit, the spectral-iteration technique

is more efficient as it avoids matrix. inversion altogether and derives

the solution to the integral equation using an iterative procedure. Using

these two methods, we have successfully analyzed several different versions

of FSS and have compared the results with theoretical and experimental

data published elsewhere. The results derived with the spectral approach

have not only been found to be accurate and efficient, but are also applicable

in a frequency range which is considerably wider than that of the conventional

method.

The spectral iteration approach has also been found useful for

analyzing other utuctures, such as conducting and dielectric scatterers

of arbitrary shape. To-date, only a preliminary investigation of this

problem has been carried out but the results appear to be quite encouraging.

An invited paper describing the spectral technique was recently presented

at the Method of Moments Workshop held in St. Cloud, Florida, under the

auspices of Rome Air Development Center. A paper describing this

2
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presentation is appended herewith (Appendix I). Other manuscripts accepted

for Journal publication and describing the work carried out with partial

support from this grant are also attached.



APPENDIX A

SOLVING ELECTROMAGNETIC SCATTERING PROBLEMS

WITHOUT MATRIX INVERSION

R. Mittra, C. H. Tsao and R. Kastner
Electromagne tics Laboratory
University of Illinois

Urbana, IL 61801

Abstract - The applications of the Moment Method a la Harrington

to the solution of electromagnetic scattering and radiation problems

are well known, and the method has revolutionized the way boundary-

value problems are being solved today on modern computers. However,

as the frequency becomes higher and the body size becomes comparable

to the wavelength of the incident field, the CPU time on the computer

becomes large and the storage requirements also become large - if not

prohibitive. It is therefore useful to look for alternative approaches

to the moment method for atticking the radiation and scattering prob-

lems in the so-called resonanci region and above.

In this paper, we introduce an iterative technique in the spectral

domain which circumvents the limitations of the moment method alluded

to above. The method is computationally efficient because it makes ex-

tensive use of the FFT algorithm to perform the Fourier transformation,

which is an integral part of the spectral domain approach. The pro-

cedure also has the un" ,ue feature that it has built-in convergence and

accuracy checks, features which are not typically found in other methods.

The paper illustrates the application of the spectral-iteration tech-

nique using scattering from periodic structures and arbitrary bodies as

examples.

The work was supported by the Office of Naval Research, Contract

!00014-75-C-0293.
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I. INTRODUCTION

The purpose of this paper is to describe an approach called the

* spectral-iteration technique for solving electromagnetic scattering

problems without the need for matrix inversion. The method is espe-

cially suited in the high frequency range where the dimensions of

structure are large compared to the wavelength. If the moment method

were applied in this range, the matrix size that would be required to

handle such structures would be large, and the matrix inversion time

as well as the storage cost would be prohibitive. Also, there are

geometries such as grating structures which we will be discussing

shortly, for which no asymptotic solutions are available because the

ray solutions based on GTD, or physical optics approximations, are

entirely inadequate.

Although the spectral.-iteration technique has recently been

applied to a wide class of problems,* for the sake of illustrating

the principles of the method we will use the example of periodic

structures such as arrays of conducting strips or periodically per-

forated screens which can be either free-standing or printed on

dielectric substrates (see Figure 1). These gratings have frequency

selective properties, ahd find many applications as artificial die-

lectrics, optical and quasi-optical devices, and dichroic surfaces

for antenna reflectors and radomes.

Conventionally, the problem of electromagnetic scattering from

these periodic structures is attacked using the mode-matching pro-

cedure employed in conjunction with the method of moments. A de-

scription of this procedure can be found in a number of papers on the

subject by Chen (1], Lee (21, and McPhadran and Maystre (3]. Though

this method works quite well i.n the lw-frequency region, it becomes

prohibitively costly if not impractical at the high frequency region

where the aperture size is one to two wavelengths, or larger, because

For a bibliography on Spectral Domain Methods refer to the
Appendix.
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the matrix size required for an accurate solution bacomes prohibi-

tively large and rt numerical computation becomes extremely time-

conz -sing and costly. As mentioned earlier, the high frequency
techniques, e.g., GTD, cannot be applied to circumveit the aboie

difficulty either, because the complex geometrical configuration

of the structure does not lend itself to the ray fo-malism of GTD.

In this paper we introduce a new technique based on the spectral

domain approach which provides an efficient and accurate solution

to the grating problems described in this paper.

As a first step, the new approach begins with the formulation

of the problem in terms of an integral equation in the transform

domain. The standard procedure for deriving the integral equation

for the unknown aperture field (or the induced current) is still

followed; however, in the transform domain the convolution form of

the integral equation becomes an algebraic one. Furthermore, be-

cause of the periodic nature of the structure, the transform natur-

ally takes the form of DFT (discrete Fourier transform) which can,

in turn, be efficiently evaluated using the FFT (fast Fourier trans-

form) algorithm. The transformed integral equation is subsequently

solved, using an iterative procedure, simultaneously for the aper-

ture field and the induced current. It is evident that the method

avoids the time-consuming steps of evaluating the matrix elements

and their subsequent inversion. More importantly, the problem of

storing and handling over-sized matrices is circumvented even at

high frequencies, where the number of unknowns can exceed the figure

2000. An added feature of the method is that a built-in step in the

iterative procedure provides a convenient measure for the boundary

condition check, a feature not readily available in cionventional



problem. The above authors have used the GTD solution as the zeroth

order approximate solution and have also employed an iterative pro-

cedure to generate the final solution. However, to-date this pro-

cedure has not been applied to the grating problems being considered

in this paper.

In the next section, we present the formulation of the periodic

grating problem. In section III, we describe the iterative prcedure.

In section IV we illustrate the application of the technique to a

number of practical geometries. Finally, we demonstrate in section V

that the approach is useful for a class of closed-region problems,

e.g., waveguide discontinuities. A brief sunary of the paper is

included in sectio" VI and some conclusions are presented.

II. FORMULATION

For the sake of illustrating the spectral approach, we consider

the problem of a uniform plane wave scattered from a free-standing

periodically perforated conducting screen shown in Figure 2. However,

the method of solution is easily and conveniently extendable to the

case of a screen on a dielectric substrate.

Due to the periodicity of the structure, the electric field on

either side of the screen can be expanded in terms of the Floquet

space harmonics. Using the e Jwt time convention (suppressed), we can

write

[x: x 1 L + *Li Z for z > 0

and

x * L:Y:i • for z < 0

y m

8
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Figure 2. Free-standing, periodically perforated screen illuminated

by a plane wave propagating in k i direction.
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where E represents the incident field, (, Y ) and (X, Y)
am mn =9Mn

are the reflection and the transmission coefficients of the Floquet's

harmonic modes, respectively and mn's stand for the Floquet mode

functions, given by

, - exp[j (umo x + v y)]

where
2ir

u =--- k sin e cos
mo a

m,n = ,1±,.

2irn 27nm
vn in- acot k sin 6sin~

and

k2 _u2 + v2 )]1/2 k2> (U2  + v2

-jk -(mo un ifkm

Ym-
,2 .2 2 .21/2 2 2  v2

-[(u,~ + v k2  2  if k2 < (uZ + v)

The z-component of the E-field can be derived from (1) using the

divergence theorem.

Enforcing the condttion that the tangential field is continuous

across the interface, we obtain

x -x , y Y- whenm Oorn O:
mn mn mn mn

and
i+ + i X-  Y+ +i -Y

00 x 00 00 y 00

The H-field in the region z > 0 and z < 0 can be derived from

(1). Evaluating the H-field at z - 0 and z - 0+, subtracting the

expression for one from the other, and making use of the requirement

that the tangential components be continuous across the aperture,

one arrives at the equation:

10



A a x -H - +  [ iy

'm, -n an2 Ifor z-0
"V ar '*C- -H i + O [ jx  (2 )L I mJ ,mJ y 2-

ere is the incident H-field,

is the induced current on the surface,

A -u v /
S,,, 2 /

2Ymn -Yan'
B I " am- ~/Y Ymn"

In (2) we have used the notation that for a function f(;) defined on the

z I 0 plane, where r is the position vector on that plane, the truncs-

tion operator e is defined by

6(f(r)) - f(;) for r on the conducting surface

M 0 for r in the aperture

and
(f(r)) I f(r) - (f(r))

The obvious identity 4(J) - J and that i x [((z - 0 ) - H(z 0-)] =

have also been used in deriving (2).

Unlike the integro-differential equation in the conventional method,

which applies only in the aperture (or strip) region, (2) is valid over

the entire surface. The price paid for extending the equation to the

full range Is the introduction of an extra unknown j. However, as we

will soon see, the additional unknown j can be solved for along with the

aperture field using the iterative procedure discussed in the next section.

III. ITERATIVE PROCEDURE

The summation involved in (1) and (2) can be readily identified as

the DFT operation. LUt F be the operator representing the DFT, and let It

~11



represent the tangential electric field in the transformed domain.

Identifying (X n, Y ) in (2) as the Fourier coefficients E t and

writing G for the matrix [: 2:]
we can write (2) symbolically as

S- E 41 + 6(j) (3)

where the subscript t indicates the tangential components, and it is

understood that all the quantities are evaluated at z - 0.

If the induced current were available, the solution for Et could

be immediately obtained by invoking (3) and by using

a (F -- H1 + 6(3))) (4)
t

In practice, however, J is the unknown to be solved for, together

with E and hence (4) cannot be used directly. Instead of using (4),
t = n+l

a recursive relation between the (n+l)th approximate solution E(

and the nth approximation (n) is now derived and the two unknowns
t

It and J are solved for simultaneously using an iterative procedure.

To derive the recursion formula for we begin with (3),

which relates i(n) and &(n), and write

8( (n) ( =(.) -i
a (n) t (a) + s(5)

Substituting (5) into (4), one obtainsI

1(0+1) . Cl(Fl(_iji + O(F(d 1(n)) +Ri)) (6)

Equation (6) is the desired recursive formula. Before inserting
1(n) into (5), we adjust its amplitude by multiplying with a scale
t

12K



factor K, computed according to the variation expression

' t (7)
- <l(n) FC C7)n)),t E t

where <f, g> ae f'g da.
aperture

Eqiuation (7) is obtained by applying the one-term Galerkin's

method to (3) using n) as the testing function. It is apparent

that K - 1 when 1n) is the exact solution. K, therefore, also

Prcides an indication of the accuracy of the nth iterated result

in a weighted-average sense.

In the following we proceed to outline an iterative procedure

for solving (6):

1. Begin with an initial estimate E(0). The amplitude of
(O) is to be properly adjusted using the scale factor
t
K determined from (7).

2. Compute (0), the discrete Fourier transform of (0)
t t

This step car be carried out efficiently using the

FFT algorithm.
3 - 2(0)3. Compute GoEt

4. Obtain the DFT of Go E0 using FIT.
-i t

5. Subtract -i from the result obtained from step 4.

This gives the zeroth-order approximate solution (0).

Generally, the approximate solution for J obtained in

this step has non-zero values extending beyond the con-

ducting surface. The satisfaction of the boundary con-

dition for the induced current can thus be verified by

checking how well the nth approximation for the current

is confined to the conducting surface.

6. Add 4' to 3(0) obtained in the last step, and take the
t

inverse DI? of the ros~lt using FIT.

13



7. Multiply - by the result obtained from step 6.

obtaining (l)

S. Take the inverse transform of (l) to get

The exact solution for E should have zero value ont

the conducting surface. This criterion serves as a

boundary condition check for the approximate solu-

tion 1 (n) obtained in this step.t

9. Repeat the whole procedure, as necessary, using

8(11 ))" to generate the next higher-order solu-

tions J(1) and 1(2) until convergence is achieved.

In the following two sections several examples are presented to

illustrate the application of the technique described above.

IV. SCATTERING FROM GRATINGS AND GRIDS

Let us consider a free-standing, strip grating structure illmi L

nated by a normally incident uniform plane wave as shown in Figure 3.

Let the incident E-field be polarized parallel to the edses of the
strip (an H-wavo).

The formulation for this problem is given by (2). The iterative

procedure discussed in section III is applied to solve for the tan-

gential aperture E-field, it, and the induced current density, J.

Figure 4a shows the incident R-field truncated in the aperture,

which Is used as the zeroth-order approximation for Eto i.e.,
1(0) - 0(1'). The 3(0) derived from 1(o) is shown in Figure 5a. (0)

has significant non-zero values extending into the aperture region.

This could be expected because of the crude initial estimate made for

(0). Figure 5b shows 3(l) obtained after one iteration. Observe the

significant improvement achieved with Just a single iteration even

though the zeroth-order approximation for 1(0) was rather crude. Higher-

order solutions for 1(n and 3(), obtained via further iterations, are
tshown, respectively, in Figures 4b to 4d and Figures 5b to 3d. The

14
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rapid convergence and the accuracy, which is verified by the boundary

condition check of the solutions, are well-demonstrated in these

figures. The induced current density J also shows the expected edge

behavior, i.e., it becomes large at the edges as it should for the

incident H-wave.

Figures 6 and 7 show the solutions for Et and J obtained after

four iterations when the gratings are illuminated by an obliquely

incident plane wave with an incident angle 8 - 30° and with the H-

field polarized parallel to the edges of the strip (in the E-wave

case). Again, the boundary conditions are satisfied extremely well

4y the results, and the aperture E-field also shows the expected edge

behavior for the incident E-wave.

Next we consider the scattering from a free-standing conducting

grid illuminated by a normally incident plane wave. The geometry of

the problem is shown in Figvre 8. The aperture area is approximately
2 2

1OA whereas the cell area is about 44X . The initial approximation

for E is still chosen to be the truncated incident field, and the
t

dominant component of the tangential aperture E-field is shown when

the incident E-field Is polarized in the y-direction.

For all the computations in this saction, 32 terms in the

Floquet expansion functions are used in representing the unknown

fields along each of the two dimensions. This leads to 211 equiva-

lent unknowns to be solved for. The computation time, however, re-

quired for deriving the solution is quite moderate (5 - 6 secs. of CPU

tim on the CDC Cyber 175 System). Clearly, any matrix method dealing

with such a large number of unknowns will be totally impractical.
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regions of dissimilar dimensions. An open-region type example is a

corrugated surface which can be thought of as a junction of two
0

regions, viz., the infinite half-space and a periodic array of short-

circuited waveguides. For the sake of si~aplicity, a closed-region

type problem - a step discontinuity in a parallel-plate waveguide -

is considered in this section. The geometry is shown in Figure 9.

The incident field is a TE mode wave. The formulation of this prob-

lem can be found in the literature. The integral equation is given

by
b b

E (x')K-(x,x')dx' Ey(x')K (xx')dx' - 2Hi (8)
J y x

0 0

for 0 < x < b, z 0

where E is the unknown aperture E-field,y

Hi is the incident' H-field,
x

K(xx') - sin x sin x'
jwj in M-0 a a

K4  xx') Ir+ sin --xsin x'jW1 m b b

j(k 2 - (.m)2)1/2 if k 2 > mi2

r- k

ml)r 2 2 if 2 mt 2

and

2 mw 2l1/2 2 miT 2r,  J(k_ /2 if k2 > (.)

mit((r 2 _ 2 1/2 ,2 m ( . 2

Note that (8) is defined in the region 0 < x < b. To apply the

iterative technique, ic has to be extended to the full range

S 23
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Figure 9. Step-discontinuity in a paralel-plate waveguide
with a TE incident wave.
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0 < x < a. This is achieved by introducing an extra unknown func-

tion J(x), and the extended equation takes the form

a a

E (x ')K- (x x ',dx' - EY(x ')e (x 'x ')dx ' + 8(-2H') + 9(J(x)) (9)
0 0

for 0 < x < a

where for any function f(x)

8(f(x)) - f(x) if 0 < x < b

-0 ifb<x<a

and

O(f(x)) - f(x) - o(f(x))

A recursion formula relating the (n+l)th order solution E to
the nth solution Ent y can be derived via a procedure similar to that

developed in section III. The formula is

a a a a

E n~).K_ E n) - e(-2H ) + 98 fE()- En)K- 6(-2H'))

0 0 0 0
(10)

Equation (10) is now solved using an iterative procedure similar

to that developed in section III. The integrations in (10) can again

be carried out using the FFT because of the characteristic nature of

the kernels. Figure 10 shows the aperture E-field distribution at the

discontinuity. The initial approximation for E is taken to be theY
incident field truncated in the aperture.

The result is obtained in three iterations with 32 expansion

functions used in reprasenting the unknown field. We note that the

boundary condition on Ey, viz., that it vanishes at the edges, is

satisfied by the iterated solution.

25
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VI. AN EXTENSION OF THE SPECTRAL-ITERATION TECHNIQUE FOR ANALYZING

SCATTERING FROM BODIES OF ARBITRARY SHAPE

In the past, the application of the spectral technique has been

largely restricted to scatterers with two-dimensional geometries and

with planar facets.

j A new extension of the method, outlined below, allows o~ne to

analyze the problem of scattering from bodies with arbitrary shape

and size. The method has wide application since it is capable of

handling body shapes which are not conveniently treated either with

the low- or the high-frequency techniques, an example being a long

and narrow cylinder of finite length. Moreover, the range of appli-

cation of the spectral-iteration approach encompasses both the low-
frequency region, where it can provide faster and more efficient

solution than the conventional moment methods, and to the high-

frequency range where it yields both the surface current and the

near fields. In addition, the method has a built-in boundary con-

dition check, a unique feature not present in asymptotic techniques,

e.g., the ray methods.

The first step in the spectral-iteration method is to repre-
sent the scatterer via an array of flat slices. The current on each

such slice is sampled by a thin ring on the left side of the slice

as shown in Figure 11. The iteration begins with an initial guess

for the current distribution on the scatterer on the basis of, say,

the physical optics (PO) approximation or the GTD. Next, we evalu-

ate the field at the first plane which is farthest to the left oZ the

scatterer. A process of improving the assumption for the current then

starts. It is done one slice at a time from left to right, as explained

below. Once the whole body has been scanned in this way, the first

iteration is over, and the process is repeated until a convergence is

attained and the boundar~y conditions are satisfied.

The wnnner in which the current rings are updated is described as
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follows. Consider the pth slice, one which is bounded by the pth

plane on the left and the p+lth plane on the right, and contains

the thin current ring J at its left immediately to the right ofp

the pth plane (Figure 11). At the pth-plane the scattered field
I4- 4-- * -

consists of two components, viz., E and E . E is the aggregate

of the contribution from all of the sources to the left of the pth

plane. It spectrum is thus propagating to the right and, conse-

quently, the radiation condition dictates the choice of the propa-

gator e- jkzz for any of its plane-wave spectral components. The

second contributor to the scattered field is E , which is the con-
p

tribution of all the currents to the right of the pth plane and is

thus propagating to the left. We assume that in the process of

scanning the body from the left to right all the currents to the

left of the pth plane have been updated, implying the E has beenP
updated as well.

We next proceed to update the current in the pth slice, i.e.,

J . To do this, we look at the plane immediately to the right of

J . This plane is shown by the dashed line in Figure 5.1. E canP P
be transformed to this plane simply by adding the contribution of

J . In the spectral domain we have the expression

+
E +G. (11)

where C is the Green's function in the spectral domain, the - super-

script denotes the plane immediately to the left of Jp, and the +

superscript is associated with the plane immediately to the right
4.-

of J . Since E is known, we are now able to use the assumed J in
P p *+ p

conjunction with (11) to compute 9 and then the total scattered

field

ip- (£+ +E~

p (E E)p

Next, inverse transforming E yields the scattered electric field inP
the spatial domain and the application of the boundary condition
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allows one to replace the total scattered field E inside the body
incP

by -E A Fourier transform is then taken and the following equa-

tion is used to obtain the updated E p
P

- (updated) - E (12)

Finally, the updated J is derived from (11) and the updated E
p * p

Also, Ep+1 is obtained from E p via the equation

-B- + -jk z A
E -~l E pe (13)

This completes the operation on the pth slice and we move to the

(p+l)th slice to repeat the process in order to obtain a new value for
J3+ . We continue in the same manner, proceeding to the successive

slices toward the right until we are finished with all the slices and

have covered the entire body. The end result of this series of steps

is a complete, updated version of the current on the entire scatterer.

Having obtained this, the first iteration is completed, and the whole

process can be repeated.

The iteration process is continued until convergence is achieved,

as indicated by the satisfaction of the boundary condition on and in

the interior of the scatterer.

It should be noted that since the two-dimensional FFT is used,

even for a three-dimensional scatterer, the method is computationally

efficient and its storage requirement is low. Furthermore, since the

boundary-condition check is applied at each stage of the iteration,

the accuracy of the final (convergent) result is guaranteed.

Preliminary studies have indicated that the arbitrary body scheme,

though originally conceived in connection with perfectly conducting

scatterers, may prove useful for handling dielectric scatterers as

vel. It appears that the method may be generalizable to inhomoge-

neous dielectric bodies-as well, although more work remains to be done

to determine the scope and limitations of this approach.
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APPENDIX B

A SPECTRAL DOMAIN APPROACH FOR COMPUTING THE RADIATION
CHARACTERISTICS CF A LEAKY-WAVE ANTENNA FOR MILLIMETER WAVES

R. Mittra and R. Kastner
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UxBANA, ILLINOIS 61801

ABSTRACT

This paper deals with a new method for evaluating the complex

propagation constant 8 in a leaky-wave structure comprising of thin,

metallic rectangular strips etched on a dielectric rod of rectangular

cross section. The radiation pattern of the leaky wave antenna can be

determined once 0 is known, since Re(8) governs the direction of the main

beam and Im(0) accounts for the beamwidth and aperture efficiency. Tn

addition, the knowledge of the dependence of 8 on frequency allows one to

design the antenna for frequency-scanning applications. The method

employed in this paper is based on the spectral domain appro,:h which

formulates the elgenvalue problem in the Fourier transform dumain.

Computed results are shown to be in very good agreement with experimental

measurements.



1. Introduction

In this paper tie describe a novel mrthod for eval ating the complex

propagation constant B in a leaky-wave structure comprised of an array of

thin, metallic, rectangular strips etched on a dielectric rod of rectangula-

cross section. The geometry of the problem is shown in Figure 1. This

configuration finds useful applications as a frequency scannable antenna,

particularly at millimeter waves where the antenna can be conveniently

integrated with dielectric-based planar integrated circuits [1,2,3].

The complex propagation constant $ along a leaky-wave antenna

determines the radiation pattern of the antenna. Specifically, Re(U) gover:ns

the direction of the main beam, and Im (8) accounts for the beam width and

aperture efficiency. In addition, when the dependence of 8 on frequency

is known, it is possible to design the antenna for frequency-scanning

applications.

In the past, the determination of 8 has often been accomplished via

experimental means, mostly by near-field probing techniques. Analytical

evaluation of B has been carried out for structures for which the leaky

wave is generated from guiding structure which supports a fast wave, e.g.,

a slotted waveguide [41. For such a structure, B differs only slightly

from the guided-wave propagation constant in the absence of the slots as



sets of networks are required for every hybrid mode. In addition, the dis-

.xntinuities mubt be incorporated into the equivalent network by lump-element

reresentation, which by themselves may require the solution of some involved

boundary-value problems.

In this paper we employ a method based on the spectral approach which

formulates the eigenvalue problem in the Fourier transform domain. A des-

cciption of this method appears below.

2. Formulation of the Problem

The formulation of the problem is based on the spectral don.ain

approach which has the following advantageous feature. The Green's function

for the dielectric substrate region is conveniently expressible in the trans-

form or spectral domain in a closed form, whereas it takes a complicated form

in the conventional space domain approach.

Referring to Figure 1, let us consider a y-polarized wave traveling

along the z-direction. Because of the periodic nature oc he geometry, we

can express the fields propagating along the struc.ure in terms of Floquet

space harmonics with wave numbers 8 (=S+ 2nr/6), where 8 is the complex
n

wave nuT.ber we are seeking. It is evident that only a finite number of 8n

are in the visible region, i.e., satisfy the criterion IRe snI < k, where k

is the free-space wave number, and on].y these B contribute to the leaky-wave
n

radintion. Typically, these leaky-wave antennas are designed such that

n - ±1. As alluded to earlier, the real part of B+i determines the direction

of the main beam and its scanning properties, whereas the imaginary part

determines the beamwidth and efficiency of the antenna.
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As a first step toward attacking this problem, we replace the

dielectric rod with a slab using the well-know effective dielectric

constant method [6], [7]. The effective dielectric constant is given

by r _ky2

eff 1k

where k is the free-space wave number and k is the fundamental mode irthY

spatial frequency corresponding to the cosine variation in the y-direction

inside the dielectric. Next, the Green's function for the geometry is

constructed in the spectral domain, because the expression for the Green's

function in the transform domain is considerably simpler than the corres-

ponding one in the space domain. The expression for G, the two-dimensional

Fourier transform of the spatial-domain Green's function for the E-field

of y-directed point source located at a distance d above the dielectric

surface (Figure 2), is formulated in a fashion similar to Collin's (8].

It is given by

G(::,u,'

(k~l + k)e -
j k x 2T  

-k )e -jk Ix-diu2)  x. 1 ()xl x2_ xl"
-.. 1- u _e e

0 2jk x2 T . _x2-Tj

+xl + " 2 - (k.i - kx2 ) (2)

where

k xl F =iV

k x 2 E e f f u - v "

37

-T _ I HI I-



and u and v are the transform variables corresponding to the y and z

directions, respectively. These are normalized with respect to k; hence,

all the dimensions are expressed in te-s of electric length (radians).

In our case, d-O. The tedious Fourier inversion of (2) is avoided

by keeping the rest of the development in the transform domain. The

re;resentation for the electric field in terms of the current distri-

bution on a strip takes then a simple form of algebraic product (as

opposed to convolution in the space domain). Ile have

E ,G(o,u,v) - JCo,u,v) (3)

where J is the transform of the assumed current distribution on the

strip. Since w < < L, it is reasonable to assume a cosine variation

in the y direction and uniform distribution in the z direction. J

is then proportional to

uL vJ
cos - sin

J(u,v) 2 (4)

To obtain the eigenvalue equation, we superimpose the electric

iields generated by the periodic array of strips and apply the boundary

cc--.dtion that the total electric field on a representative strip is
th-jnzero. The n thstrip is characterized by an amplitude e- J Wn & and a

displacement of nA in the z-direction. Therefore, the transform of

its current distribution is

Sj e eJ(v-d)nL (5)
n
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and the total field is

3(v-)nA 
(6)

The total E-field on any strip is now equ3ted to zero in the Galerkin

sense:

f E - J dy dz- 0 (7)

strips

By Parseval's theorem, (7) is also expressible by

f E J du dv- 09)

Substi-u:ing (6) into (8), one obtains

a m

-- (V---4aj'f (u'v) J 2 (uv) r a~4 du dv -0 (10)

Utiiazing; the identity

S ej ( v -n) .1 2 - 2-r" "" 2 ,(v-8-n-)
flU -8 flin-

ora c! --. integrals is eli=inated and (9) becores

r. F

L I [C(u.v) 2(u,.v)jv. +.L. r du o (12)
no a -AW

q~aton. (12 ) is the desired eiegnvalue equation. The solutioa of

CoMpLe. a satisfaying (12). yields the desired complex wave number for

0-e leaky-,ave ante.n.
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3. Results.

Equation (12) requires an integration along the real axis in the

u-plane and a summation over all Floquet modes. Since all the consti-

tuents of (12) are symmetric with respect to real u, the integration

need be carried out only along half of the u-axis. Moreover, there

appears to be little or no contribution to the expression beyond u - 2

Pad In Z 2.

The solution for 6 is obtained via a search procedure which

seeks the zeroes of Eq. (12) within some numerical tolerance. The antenna

under consideration had 29 strips with the following dimensions at the center

frequency of fo - 80 GHz (see Figure 1): L 0.8, T - 0.3r67A, W - 0.3387).,

a - 0.6667A, and with e - 2.46. The computed B for f - 0.95f0 , 1.05fo and

1.1f was -. 31 -J.03, -.222 -j.05, -.13 -J.03 and -.05 -J.03 respectively.
0

These solutions account for main beam directions of 1080, 1030, 97.5 and 930

Ith respect to the z-axis, comp:ared to the experimental values of 1090,

103 98 nd 920. These values of £ correspond to a backward wave (n -1).

The real part of the fundamental (n o) B differs very little from that of

an unloaded dielectric rod and can be predicted by approximate methods [1-31.

However, the imaginary part of 8 has not been analytically computed before

for this structure. The experimental results, obtained by near-field probing

techniques, yield Im(3) a -.03 which is in very good agreement with our

t~ecry. As ge:2n from Figure 3, the measured and computed beam widths, of

about 50, also agree well with each other. The behavior of the experimental

pattern in the side-lobe region is attributable to the radiation from the

pattern feed region which was not modeled on the theoretical calculations.
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Figure 2. Geometry for thle Construction of the Green's Function.
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APPENDIX C

RADIATION FROM AN OPEN-ENDED WAVEGUIDE WITH BEAM EQUALIZER -

A SPECTRAL DOMAIN ANALYSIS
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ABSTRACT

A septum and an impedance matching post are used as a beam equalizer

in an open-ended waveguide-feed for reflectors used in satellite communica-

tions systems. The performaxce of this design over a frequency band is

evaluated usiag a spectral domain approach. The computed radiation

patterns in the E- and H-planes, as well as the results for the impedance

match, are presented in the paper.
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I. Introduction

Rectangular waveguide array feeds for reflector antennas play an

important role in the design of satellite communication systems. To make

the radiation pattern more symetric in the E- and H-planes of the feed,

a beam equalizer is needed. The design used in this case is a septum placed

across the mouth of the waveguide such that the aperture distribution is

reshaped to satisfy the new boundary conditions imposed by the septum.

Consequently, the H-plane radiation pattern is narro-ed to approach the

E-plane pattern, thereby achieving the beam equalizing effect. However,

the introduction of such a septum creates an impedance mismatch problem for

the feed. To alleviate this problem, a matching post is placed behind the

septum so that the reflection back into the waveguide is minimized.

The performance of this design over the desired frequency band is

evaluated using a spectral domain approach, or more specifically, Galerkin's

method applied in the spectral domain f1]. The scattered fields on both

sides of the beam equalizer are represented in terms of their Fourier

transforms or spectra which can be related to the induced surface currents

on the septum and the post. These unknown induced currents are expanded in

terms of known basis functions and unknown coefficients. A matrix equation

for the unknown coefficients is derived by applying the boundary conditions,

and the moment method is then employed in the spectral domain to solve for

these unknown coefficients, which in turn give the answer to the unknown

scattered fields. The scattered fields for all modes obtained in this

manner are than used to compute the reflection and transmission coefficient3

for each mode, propagating or attenuated. A tacit assumption made is that

the scattered field on the open-ended side of the waveguide is the same as
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that in an infinitely long waveguide containing the beam equalizer. In

other words, the truncation effects of the waveguide are igrored in

this analysis. The transmission coefficients are used to weight the

radiation field due to each mode of waveguide and the superimposed

radiation pattern is computed. The reflection coefficients are used

to assess the impedance matching performance. Numerical results indicate

that the E- and H-plane principally polarized patterns are equalized

extremely well over the entire frequency band of operation and that the

impedance matching is also quite satisfactory.

I. Analysis

The geometry of the waveguide with septum and post is shown in

Figure 1. Since the cross-section of the post is very small, the post

is modeled as a narrow strip to simplify the analysis. The incident

field is propagating in the z-direction towards the post as shown

schematically in Figure 1. There are surface currents induced on the

septum and the post due to the incident field. The scattered fields

radiated by these induced surface currents then propagate in both the

z-direction and the -z-direction, giving rise to the transmitted and

the reflected waves, respectively. In the following analysis, the

truncation effects of the waveguide at z-O are ignored, as though the

post and septum were located in an infinite guide.

The incident field in the waveguide can be expressed in terms of

TE and TM modes in the usual manner:

TE wdes:

i b ffTzE jh _ = coo (-x) sin y) exp ja
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y -jh Z B - a sin V'= x) cos y) .xp (-JB z)
y nmZT 2 sir aT O b nc

iE 0o
z

Hi  -E /Zx y TE

Hi -E / Z7 x

H h cos (- x) cos ( y) exp (-JB z)
z rm a bi

TH modes:

Ei) r i ml?
- -Je -n kl-- cos (T x) sin (-- y) exp (-jn z)

c

E7 -j en Z b-- sin nT X) Cos -- Mry) exp (-jS Z)

x rm M- a : 7

c

E a e sin (2x) sin (-y) exp (-JB Z)
z a a b )-nm

i . E / z H ~ E± / ZH 0 (1b)x y TM y x TM z 0

2 2
where k' -(n) + B2  k2 -k 2  k2 .m 2 u

IZTE U B/m~c

The scattered fields can be expressed in terms of their Fourier

spectra, which are in turn related to the Fourier spectra of the induced

surface currents. The Fourier spectra of the induced surface currents
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are then solved for by the moment method applied in the transfolmed,

i.e., the spectral domain. Specifically, Galerkin's method is used

in the present analysis - the same basis functions are used as testing

functions in the moment method. Upon solving the spectra of the

induced surface currents, the scattered fields can be obtained in

a straightforwnri manner. The analytic details follow.

Ccrresponrdng to each incident mode, the scattered fields E5 and
x

Es can be represented in the following form:
z

(2)

E (b/2 ynb sinty C
Co x) / (a) exp(-Jaz)da,

Es (0< y< b/2) sin Y y

where

n( 2)Y [ (kb- <-) -< bn

and f n), g ( s) are the unknoi- Fourier spectra to be determined. The

n n

i ~~~ as (~<b2 csY

expression for E is then obtained from the \Uxwell's equation 7 -0,

giving

FE (b/2 < y < b)1 OS' -(-

Iasin@Zx) h (a) exp (-Jciz)dct
a n (4)

Eys (0O<y <b/ -Cos Y >
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with

"2-") f a(at) + j a&(CL)
h(a) - (5)
n y

n

Now that we have E, we can find H by using the curl-of-E Maxwell's equation.

However, in anticipation of relating the H-field with the induced surface

currents on the septum and the strip, only the x- and the z- components of

the H-field are computed, giving

-i-1 sin(Elx) x) exp(-Jaz)JJ LA a -

(0 < y < b/2)j

(-Y gn(a) + Jc hn (a)] cos [rn(b-y)T

da

![vn gn (a) - ja h (a)] cos Y n y
nn n .

a: ('b/2< y< b)]

-i cos(-a x) I exp(-jcLz)

H: (0<y<b/2)1 [ f (CL) + ()h (:0] Cos (y(b-y)IFn n a n n

-Y f (a) " -) h (1)] Cos y "

(6)
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The induced currents on the septum and the strip can also be expressed

in terms of Fourier spectra. For each incident mode, we have

J (x,y - b/2, z sin(-nx) f j (a) exp(-Jaz) da

. (7)

. (x,y - b/2, Cos( ni-x) f (a) exp(-Jciz) d(

where j z(a) and j x(a) are Fourier spectra of the induced surface currents

to be related to the spectra of the scattered H-field. This relationship

is obtained by enforcing boundary conditions on the septum and the strip

and can be written as

-H x(y - EUr (b/2 + 0)) + H x y - l--m (b/2 - e)) zj- (8)

H (y- li (b/2 )) - H (y - 1 (b/2 ]
where e is a positive quantity.

Substitution of (6) and (7) into (8) leads to the following algebraic

equations:

F=2 y nb 
r

*j-- cos (-) Cyn  gn(a) - jahn(a)] 1 (

(9)
nb

_:.2 Cos -D) Cy f (a) n, h (a)]
j5 n n 1
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Substituting h n from (5) into (9) and manipulating the resulting equations
leads to the following matrix equation for f n(a) and g n(a) in terms of the
transform domain currents j x() and J z(a).

iJ X C1 2 t f (a)(a
)a 2 n i u

a
2 - b 

(10)k2 -2 2cos(--)

An inversion of (10) gives

i " ___- ___ u a-"2 Jz

ef r of) the Iii i::;j): k 2-n)

n ' 
2 

zbg :)l2k 2 -Y Cos ( - -nz
2k2 2 (

If the Fourier transforms of the currents j z(a ) and x (a) are known, we
can obtain fn(a) and gnja) from (1i) . Subsequently, (2), (4) and )ca
be used o derive the scattered fields by substituting for f(A) and gn()

in hose exprssons. The remanng task is to solve for the transform

currents jz(a ) and ix(a), using the Galerkin's method applied in the
transform domain.

First we exress the corresponding space domain currents in terms of
a linear combination of a sec of suitable basis functions with unknown

coefficients.
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r
(X, z) cos (--A) A + tAOPO (z)

Li

L za c x
n1 J

os (---- X) Jx( Z

sin x) (12)

where U and U are truncation functions on the septum and the strip,
c t

respectively,

I-c<Z<O,UC
U otherwise-2

Ut -(c + d +- t)'cz<-(c+d)

otherwise

and p0 (z), pi(z), and q,(z) are basis functions to be defined later.

Since the post is assumed to be of very small radius, we model it as

a strip of width t, which is also small. Hence, only the x-directed current

on the strip is expected to be significant. In (12), the unknowns to be

e.valuated are the coefficients A's and B's. From (7) and (12) it can be

seen that

AP (CO

LQLnz (ZBJL - 1 j (13)

where
* 0

P pi(Z) exp (Jaz) dz, i 1, 2, ... , I

1 (-(c+d)
0 "' )-(c+d+c) PO(z) exz (jnz) dz
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0

Q() - q,(z) exp (jaz) dz, Z -1, 2, ... , L (14)

Replacing (13) in (11), one obtains the expressions for the transform

domain functions f (a) and G (a):

2( 2- 1 nit ZL
fn(a (k2 _n r A iP ±(a)I a EB QZO

-jW U aZ i-a;01
* 2k2'y con (

n( ) r A (cL) + (kZ-aZ B)
n a Zi~ Z I

Substituting these expressions in (2), (4) and (6) we obtain the final

results for the scattered fields in terms of the unknown coefficients

A's and B's. In order to find these unknown coefficients, we enforce the

boundary condition for the electric field on the se.tum and the strip,

which requires the total tangential component of the electric field to be

zero, i.e.,

Lx xL ba , at Y b

LI L -EJ aty-(16)

Using (1), (2), and (15) in (16) we derive the following equations for A's

and B's.

F m an-. .A) f n tan. P (bJ ) exp(-jpz) da

tan (b) Q1 ( ) exp(-Jaz) da
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-2 T nr
-WU - 2  nm sin( 2 exp (+8 ~nmZ), for TH modes.

k Mik

2 AT-- h  sin(- ) exp ( JS z), for TE modes.b k2 im 26 m

2 I si h ) x (+ j~ z), for TE modes.

b 2. rim 1. rim

C

A, f ) tan - (=C) exp (-ai') do

L f2 yb
Ztn (--B1 -) () p (a) d

Y 2 5

1-1-

( 21k2  sin (M- exp (+JS z), for TH modes

Nwmultiply both sides of (17) by the basis functions p (z) and q Wz and

integrate over z to obtain the following equations.

22it2 1 y nb
(k Z ~A, f -tan(-P,()ia)d

a i0O -0 a

* 55

AmI = ~ = - - -



2A p*, 2 ),
a nm k ( sin nm'-O .,I for TM modes

W U k2 enm 2 P (
c £ nm

rJ

- h sin !- ,-0,1,..,l for TE modes
bi 2 2~ nm 2'O~, ,l to? mde

ci I.,

I .

n' .Z A, -c2 tan (--) ?,(a) Q, () d

L 2= k-2 Y b

+ B (kQCn - Q(a)
I n

0 , -1,2,... ,L for TE modes (18)

The upper quantities within the square bracket in (18) are associated

with positive z incident modes, and the lower quantities are associated

rith negastiv - incident modes. Both cases are included because we are

intertsted in the transmission coefficiernts as well as the reflection

coefficients. The integrals Are evaluated by numerical integration, and

the resulting system of line&: equations is solved as usual for the

unknows A's and B's by matrb .nversion.
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The choice of basis functions, i.e., the 9s and q's, is based on

previous experience and the consideration of the behavior of the
I

currents ac the edges of the septum and the strip. Only two terms for

the expansion of the currents on the septum are retained, which are

believed to be adequate for this analysis. The basis functions and

their Fourier transforms are shown in Table 1.

Let us now consider the case of interest, namely, one in which the

incident fields are TE0  modes. We have n-0, and the following relations:

2 2 2YO a - Mt (19)

2

2 2 mwrS ak -(-) (20)Om b

iNhen n-0, (18) can be simplified to the following

2 tan
Z i Pi(a) i*,(a) d,1 -0 -- 0 b

2

" ± sin(mw ho m , i-0, 1, 2
air 2I P.it (Sum

2 Om

Z Bt f Y tan (--) Qt(a) Q*,(m) da 0 0, Z'=1,2 (21)
L,, -*,

The equations for A's and B's are uncoupled. Therefore, A's and B's can

be solved for separately. The system of equations for B's is homogeneous,

57



which leads to the conclusion that all B's are zero. Consequently, there

are no components of the current in the z direction either in the septum

or the strip. In the following development, only the system of equations

for A's is investigated. Observe that the solution of A's involves an

inversion of a 3 x 3 matrix, which is an easy task for the computer. How-

ever, the evaluation of the matrix elements involves nine complex integrals

to be numerically integrated. Since there are singularities in these integrals,

we must examine the integrands carefully to make sure that the numerical

integration is applied correctly to give accurate results in spite of the

singularities. Therefore, it is useful to write the expressions appearing

in the integrands of (21) in an explicit manner as follows:

PoP - e (-2 tn-,2']

2

p P* -y exp () e x

1 0 16V4

01 16(7 exp -(-) I exp [ 2ja + d +

1 16 7 0l 2Se e 4 2ct [.(. .2 c t

P((7 1*- j exp (( + d +

2 !*jc at

22

c2

i~
p p*u 1 2 (Cal

1 1 16 0 2

2

2 2 16 1Z (22
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Note that P P2P , etc. are not of interest here because the corresponding

integrands are odd and therefore the integrals involving them are identically

zero. Now observe that the integrand in (21) contains a simple pole located I

at a - 0 on the path of integration for 0 < a < , provided that the01

wave number satisfies the following condition:

Ir < k < 3 "(23)

k< b

This is the case when the incident field is the dominant, propagating mode

in the waveguide. Introduction of some loss in the medium clarifies the

position of the poles along the integration path, as shown in Fig. 2. Each

of the integrals in (21) can be written in the following form

F(a)da 0 F(a)da + F(a)da + F(a)da +7j Res (-801)

-01 S01

- 'j Res (3 1 01 F(a)da + F(a)da

I(.) d F(.-)da + Trj Res (-01 - R es (S

0 28 000
01

- 2 101 F ()d + [F(-28 1 -a) + F()] da

8011

(~01

+ JO CF(m) + F(230 1 - a)] da

+ r F(a)da + -J Res (-80) - J Res (801)
28 01(24)
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In the above equation, a bar across the integral sign means principal value

integration. The method of foldover as shown makes the new integrand remain

bounded at the singularity of the old integrand; hence, this new integral
5

is easily evaluated by the numerical method. Also, since the integrand

goes to zero rapidly as a becomes large, the integration limit - can be

replaced by a large number, e.g., 14 S01. It should be noted that if the

foldover method was not used, the integral could still be evaluated numer-

ically, in some cases, but the integration limit - must be replaced by a much

larger number because of the heavy tail of the integrand, and doing so requires

increased computer time and the results are less accurate. The residues given

in (24) are easily calculated and are given by the general form

44

Res(-s 01) b(-* 01) P1 (1) P (a 01 1

with Pi (a) Pi. (a) given in (22).

(25)

4

Having discussed the evaluation of the matrix elements in detail, we can

proceed to solve the matrix equation (21) to obtain the A's. Having found

these A's, we compute f0 (a) from (15) and than calculate the scattered fields

from (2). For n-O, both ES and Ky - 0, and there is only E5 , which can be
z y

written as

< y- < b) 2 in [-Y0 (b -y)

-J.U Z AP i (00

exp (-Jc z) dai
(26)
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r V 'Z -a if k>!

where Y 0/7 -= if k < i

b
Let us evaluate (26) at y - b

-JkbZ0  2 *tan -

y 2 4 i P i (a) exp(-Jaz) dac (27)

2J

Since the scattered fields on both sides of the beam equalizer are given by

(27), we can compute the transmission and reflection coefficients by

normalizing these scattered gields to the incident field given in (I).

The reflection coefficient R can be expressed as

s

E
R - b

x z<O

-r exp(JO 01z) 2
Z Ai  2j Z Resi(¢) ]  (28)

4 h01  i-0 m-., 3,5,... j
where the poles are given by

-8 -- ,~..:'; > .C.'.) k2

1 01 b m>3 b

and the residues at these poles are given by

4 Pi(-801) exp (jz80 1)

b2 (-01)

61



4 P (jX exp (X z)
Res(m Res( ) * i(J) m >M3>3

b ( xm)

with xm b-

Xx 2

P - + )] exp tx 2

c (. ' (c

P2 (jx m) - exp ( ) ( Xm

and I0, II are modified Bessel functions of the first kind. In deriving (23),

the integral in (27) has been evaluated by the residue theorem with the

contour closed in the upper half of the a-plane. By the same token, the

transmission coefficient T can also be obtained, except this time the contour

is closed in the lower half of the a-plane.

E s  b
x b

E
x z>O

-if exp( Q a01z) 2- e4h0 1  r Ai [-2wrj Z Res i  ,m (29)

401  :

where the poles are given by

'.l =01 b

u-i 62;~m>3 b I ( k

4 .......'



Kn

and the residues at these poles are given by

4 Pi (B0) exp (-JB01 z)Res i( I  b b2 o0

4 P .(-ix m) exp (m )
Resi( ) U Resi(-JXm) 2 m > 3

b 2(.Jx ×m

with X _.b

P (-JX ) t.. exp [-xm(c+d+ i)] exp ['m

Y Xmc. c

P1  m e2 0t ( ,.)

p2 (-jxm) - exp (-Xm c jI )

and l0, 11 are modified Bessel functions of the first kind. Nmerical

results indicate that minimum reflectL-7 and maximum transmission can be

achieved if the separation between the septum and the strip is 0.1

wavelength for the gilen dimensions in Fig. 1.

The radiation pattern of the waveguide feed with beam equalizer

can now be computed in the following manner. First, the aperture field

distribution in the plane containing the waveguide mouth is estimated by

a superposition of the waveguide mode field at this plane with each mode

being weighted by the corresponding transmission coefficients For the modes

Since the transmission coefficients have been evaluated at a different

reference plane, it is necassary to refer these transmission coefficienti

back to the aperture plane. This is done by multiplying the transmission
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coefficients by an ippropriate correcting factor, which is a phase factor

for a propagating mode and is an exponential factor for an attenuated

mode. The radiation pattern is then obtained by the familiar Fourier

transform relation between the far field and the aperture field. For TE

modes, the far fields are given by the following expressions [2]:

E -- 1/2 (lab)2 sine nm nm
3 k2 (1 + -+ - cosa + R (1 - - - cosa)]

2X r k

n 2 (m7 2
[(-sino) -b --COS) T (0*

anm

1/2 )2

E - - ( () (lab) sini sin6 coso
~2 X3 r

S S
cos + m -+ R (Cosa - m ' (e,) (30)

k k nm

si(2a sine coso + -7sin(-- sine sin, + -

2 2 2 2

L:a ieCOO ~ :r ie sio -_i

exp { -j [kr-- sine (a cos -+ b sino) - (n+m+l) .1 }
2

where (r,C,.) are the conventional right-handed spherical coordinates. The

total radiation pattern is then obtained by a superposirion of these

Individual mode patterns with the appropriate transmission coef.ficients

referenced at the aperture plane. Computed patterns and numerical results

are presented in the next section.
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III. Computed Results

The performance of the square waveguide feed with beam equalizer

whose dimensions are shown in Fig. 1 with d -. lA is evaluated over a

frequency band of operation. The value for c has been chosen experi-

mentally to be 0.23\. The computed radiation patterns in the E- and

H-planes are presented in Figure 3. The beam equalization is quite

satisfactory over the entire band. The corresponding aperture field

distributions are shown in Figure 4. Looking at these aperture dis-

1
tributions, one can explain how the beam equalizer works. It goes

as follows. The aperture distribution for the E-plane pattern is

uniform which gives a familiar (sin x)/x type of pattern. The H-plane

pattern is due to a cosine-taper type of aperture distribution if there

is no beam equalizer present. Hence, the beamwidth is larger than that

of the E-plane pattern for a square waveguide aperture. However, the

introduction of the beam equalizer forces the H-plane aperture field

to vanish at the center of the aperture, which makes the field distri-

bution look more uniform. Hence, the main lobe of the H-plane pattern

narrows to achieve the beam equalization effect in the E- and H-planes.

The pattern is mainly determined by the septum; the post is present for

1These curves are generated using only the first three terms in the
modal series expansion. While the boundary conditions at the wave-
guide walls are satisfied perfectly by definition of the modal func-
tions, there appears to be a small residue of Ex at the septum in
the middle of the waveguide. This residue is solely due to the
truncation of an infinite series to a finite number of terms. Perfect
cancellation can be approached when more and more terms are used in
the series.
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impedance matching. The computed reflection coefficients over the

frequency band are shown in Table 2. If the post is absent, the reflec-

tion coefficients will be much larger than those shown in Table 2.

IV. Conclusions

A septum and an impedance matching post used as a beam equalizer in an

open-ended waveguide-feed for reflectors used in satellite communications

systems have been analyzed by using a spectral domain approach. The

computed radiation patterns in the E- and H-planes, as well as the

impedance match results, have been presented in the paper. The performance

of the beam equalizer over the entire band of operating frequency has

been evaluated. The results indicate that the E- and H-plane principally

polarized patterns are equalized extremely well over the entire frequency

band of operation and that the impedance matching is also satisfactory.
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Table 1. BASIS FUNCTIONS IN SPATIAL AND SPECTRAL DOMAINS

Spatial Domain Spectral Domain

t2 2

P (z) exp(-( 2 P (as) t e xp (-j a(cd+ ej] xp(~E

I. I
2

1

pl(z) - p() c J (S)/1_(c2c22 " a) exp (-Ja-rf) 0o2

z ,- c/2

p2 (z) ,= c/2 P2(a) = i. exp (-*j 7) Jl( 7 )
c/22

____c cn 12(

ql~z) = /1 z + C/2)q( "ex C- ""

c /2 '- C ¢

(2 ) Q1(a) - exp (-j 7) -S--
P2c/ 2_2_4_2_1_
q2(z)~~~ + c/2 Q()- C~ci2 c

2

J 0' J 1, ad J2 ae Besel funcions of he first kind and of order zero, one, and

o, correspondingly.
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TABLE 2

REFLECTION COEFFICIENTS OVER THE FREQUENCY BAND

d - O.1X

Frequency (GHz) Reflection coefficient R VStJR -
i-! RI

3.75 1.2729/10.2 5 1.751

3.85 O.1879/-134.90 1.463

3.95 0.1071/-142.02" 1.240

4.05 0.0358/-167.87 1.074 j
4.15 / 0.0442/73.10 1.092
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POT SEPTUa

'- I - b/2

- b/2

0 z z x

LONGITUDINAL-SECTION CROSS-SECTION

a=I1.3 X

b =I.3 X
c=O.25 =395 GHz

d IS VARIABLE X =0.076 m

t =0.062 X

F.gure 1. Geometry of the waveguide :ith septum and nost.
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Figure 2. Location of poles in the integration path of integrals in Eq. (21).
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APPENDIX D

A SPECTRAL-ITERAT'ON .A2PROACH FOR ANA-TYZING

SCATTERING FROM FREQUENCY SELECTIVE SURFACES

by

CRICH-USING TSAO
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I



ABSTRACT

In this paper, we apply a novel technique, called the spectral-iteration

approach, for analyzing the problem of scattering from periodically perforated

screens which find useful applications as radomes, cptical filters, artificial

dielectrics, and so on. The formulation is carried out in the spectral domain

where a set of algebraic equations is obtained directly for the spectral coef-

ficients of the aperture field distribution (or the induced current density)

rather than via an integral equation formulation. These equations are then

solved simultaneously using an iterative procedure developed in this pape.

that circumvents the need for matrix inversion. Because the matrix solution

is avoided in the spectral approach, it is capable of handling large aperture

sizes in a computationally efficient manner. The efficiency of computation

results from the use of the FFT (Fast Fourier Transform) algorithm which is

employed in the derivation of the algebraic equations and in the iteracion

procedure. A unique feature of the spectral-iteration approach is that it

has a built-in boundary-condition check which provides a reliable indication

of the accuracy of the solution. This paper also shows that the spectral

domain technique can be applied to even a wider class of geometries, e.g.,

the step discoczinuity in a waveguide.

The work was supported by the Office of Naval Research, Contract
N00014-75-C-0293.



1. NTMDUCTION

Periodic structures such as arrays of conducting strips or periodically

perforated screens which can be either free-standing or printed on dielectric

substrates (see Fig. 1) have frequency selective properties, and find many

applications as artificial dielectrics, optical and quasi-opcical devices,

and dichroic surfaceb for antenna reflectors and radomes.

Conventionally, the problem of electromagnetic scattering from these

periodic structures is attacked using the mode-matching procedure employed

in conjunction wi-th the method of moments. A description of this procedure

can be found in a number of papers on the subject by Chen [I], Lee [2], and

McPhedran and .aystre [3]. Though this method works quite well in :he Low-

frequency region, it becomes prohibitively costly f noct impraccical ac the

high frequency region where the aperture size is one to to wavelengths, or

larger, because the matrix size required for an accurate solution oeczmes

prohibitively large and the numerical computation becomes axtreelv time-

consuming and costly. The high frequency techniques, e.j., GTD, cannot be

applied to circumvent the above diff'.culty either, because the complex

geometrical configuration of :he structure does not lend itself to :he ray

formalism of CTD. Ia this paper we incroduce a new technique based on :he

spectral domain approach which provides an efficient and accurate solutiln

to the gracing problea described In this paper.

As a first step, the now approach begins with :he formulation of :he

prooblm in terms of an integral equation in the transform domain. 7he

standard procedure for deriting the integral equation f r :he unknown 2

aperture field (or the induced curren) ts sc:ll followed; however, in Lhe

transfar- donaim :ne convoltrion form of :he integral equation becomas
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an algebraic one. Furthermore, because of the periodic mature of the

structure, the transform naturally takes the form of OFT (discrete Fourier

trausform) which can, in turn, be efficiently evaluated using the M (fast

Fourier transform) algorithm. The transformed integral equation is

subsequently solved, using an iterative procedure, simultaneously for the

aperture field and the induced current. It is evident that the method

avoids the time-consuming steps of evaluating the matrix elements and

their subsequent inversion. More importantly, the problem of storing and

handling over-sized matrices is circumvented even at high frequencies,

where the number of unknowns can exceed the figure 2000. Xn added feature

of the method is that a built-in step in the iterative procedure provides

a convenient measure for the boundary condition check, a feature not

readily available in conventional approaches. Finally, the convergence

of the iterative procedure is enhanced by combining it with a variational

approach in a manner explained lacar. For completeness, "we mention that

an approach similar to .he present one has been used by Xitt.a and Ko r.4

in studying the single-scacterer (as opposed co :he periodic gratng)

problem. The above authors have used the GTD solution as the zeroth order

approximate solution and have also employed an iterative procedure to

generate the final solution. However, to-date this procedure has not been

applied to the ;rating problems being considered in this paper.

In the next section, we present the formulation of the periodic

$racing problem. In Section 3, we describe the iterative procedure. In

Section 4 we illustrate the application of the technIque to a number of

practical geometries. ?nally, we demonscrate In Section 5 chat che

approach is useful for a class of closed-region problems, e.g., "davejuide

disconcinuities. A brief sumar-y of the aper is included in Section i

and some conclusions are presented.
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I. FORMULATION

For the sake cf illustrating the spectral approach, we consider the

problem of a uniform plane wave scattered from a free-standinS periodically

perforated conducting screen shown in Fig. Z. However, the method of

solution is easily and conveniently extendable to the case of a screen on

a dielectric substrate.

Due to the periodicity of the structure, the electric field on either

side of the screen can be expanded in terms of the Floquet space harmonics.

Using the ej' time convention (suppressed), we can write

i,, rE Xizi
Ex -V= e forz> 0,

u • i-nnjn% o

and

U --

x~ =n 0,-.- ...

a or z 0

+ +'

where £represents the incident field, (XM Y )n and (X, Y )n are the

reflection and the transmission coefficients of the Floquet's harmnonic

modes, respectively and 'an stand for the Floquec mode functions, given

by

-exp j(u 5x vy)

where

u -T k sin 8 cos b
20 a

-' 0,±I ,:2,
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yx

Li k

?i.ure 2. Froe-standing, periodically perforated screen illuinated

by a pLane wave propagating in k direction.
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v =27n _--m cot - k sin i sin 2
ma c a

4

and

[jJ[k _ (u2  + v2 )]l.12 i f . +
20 ia mu 20 m

1-(u
V2  _ k 1/2 if k2 < (u2 + v )

20a m 30 3

The z-component of the E-field can be derived from (1) using the divergence

theorem.

Enforcing the condition that the tangential field is continuous across

the interface, we obtain

.4 - -mX = X m Y when m 0 0 or a 0 0

and

X + Ei I - Y + + Ei . Y -

00 x 0o 0 0  F 00

The K-field in the region z > 0 and z < 0 :an be derived from

Equation (L). Evaluating the 11-field at z - 0- and z - 0 , subtracting

the expression for one from the other, and making use of the recuiremenc

that the tangential components be continuous across the aperture, one

arrives at the equation:

3M - ' H i-j.U + .2 y) " for z Ii0

- M A an) t~~mn X)
(2)

where i( is the incident H-field,

is the induced current on the surface.

A - u2 .v /yz,,

. .# m m| u -. ,

33 a v M n- YM

C m u2 /Yan ma 30 Mu.
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In (2) we have used the notation that for a function f(r) defined on the z - 0

plane, where r is the position vector on chat plane, the truncation operator

i.s defined by

( 0 for r on the conducting surface

• f(r) for in the aperture

and

aw;)) - f(') - 3<f- ))

the obvious dentiy 9(7) - I and that ((z 0 )  !(:h -)]

have also been used in deriving (2).

Un ike the integro-differencial equation in the conventional method,

which applies only in the aperture (or strip) region, (2) is valid over

the entire surface. The price paid for extending the equation to the full

range is the introduction of an extra unknown j. However, as we will soon

see, the additional unknown I can he solved for along with the aperture field

using the iterative procedure discussed in the next section.
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III. ITERATIVE POCED3RE

The summation involved in (1) and (2) can be readily identified as the

DFT operation. Let F be the operator representing the DFT, and 116C E

represent the tangential electric field in the transformed domain.

Identifying (X-, Y_) In (2) as the Fourier coefficients of ' and

writing G for the matrix

C

we can write (2) symbolicall7 as

F(A t . + , (3)

•here the subscript t indicates the tangential components, and it is

understood that all the quantities are evaluated at z - 0.

:f the Induced current were available, the solution for . could

be immediately obtained by invoking (3) and by using

t*0(F 1 (-Ht + 9())).() I

:n practice, however, 1 is the unknown to be solved for, together with E

and hence (4) cannot be used directly. Instead of using (4), a recursive

th !(n+l) t
relation between the (a + 1) approximate solution E( ad the a

approximation () is now derived and the two unknowns E and J are solved

for siL-ltaneously using an iterative procedure.

To derive the recursion formula for E), we begin wi:h '3), which

relates j a(n) 4 (), and %mite
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.-() i (5)

Subst tuting (5) into (4), one obtains

a~~~~ (a(W~F(* )) (6)
C~ ~ ~ G;+ F(Et +Ht(6

Equation (6) is the desired recursive formula. 3tfore inserting - into

(5), we adjust its amplitude by multiplying with a scale factor K, computed

according to the variation expression

K. * <n) TTn)) (7)

t , t

where <f, =aperturefS-da.

Equation (7) is obtained by applying the one-term Galarkin's method

to Equation (3) using ;(n) as the testing function. It is apparent that
t

K - I when !(n) is the exact solution. K, therefore, also provides an

indication of the accuracy of the a h iterated result in a weighted-

average sense.

In the following we proc( 4d to outline an iterative procedure for

solving (6):

1. 3egin with an initial estimate 1(o). The amplitude of

( is to be properl7 adjusted using the scale fac:or

K determined from Equation (7).

2. Compute E , the discrete Fourier transform of i(0)

Thi3 step can be carried out efficientl7 using the

.TT algorithm.

3. Compute G.E0t
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4. Obtain the DFT of G() using yFT.

5. Subtract -H from the result obtained from step 4.
t

-(0)This gives the zeroth-order approximate solution J

Generally, the approximate solution for 1 obtained in

this step has non-zero values extending beyond the

conducting surface. The satisfaction of the boundary

condition for the induced current can thus be verified

thby checking how well the a approximation for the

currant is confined to the conducting surface.

6. Add -' to S(0) obtained in the last step, and take thet

inverse DFT of the result using iTT.

7. Multiply G by the result obtained from step 6.,

obtaining E()

S. Take the inverse transform of E to set .Thet

exact solution for Et should have zero value on the

conducting surface. This criterion sertes as a boundary

condition check for the approximate solution E

obtained in this step.

9. Repeat the whole procedure, as necessary, using 3(f-(
t

to generate the next higher-order solutions 1(1) 3nd

!(Z) until convergence is achieved.
t

In the following two sections several examples are presented .o

illustrate the application of the technique described above.
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V. SCATTERING FROM GRATINGS AND GRIDS

Let us consider a iree-standing, strip grating structure illuminated

by a normally incident uniform plane wave as shown in Fig. 3. Let the

incident E-field be polarized parallel to the edges of the strip (an

H-wave).

The formulation for this problem is given by Equation (2). The

iterative procedure discussed in Section III is applied to solve for

the tcangential aperture E-field, Et, and the induced current density,

..

Figure 4a shows the incident E-field truncated in the aperture, which

is used as the zeroth-order approximation for E, i.e., i(Ki).
tt t

The !(0) derived from ) is shown in Fig. 5a. has significant

non-zero values extending Into the aperture region. This could be expected
because of the crude initial estimate made for Er(0). Figure 3b shows

obtained after one iteration. Observe the significant improvement achieved

with just a single iteration even though the zeroth-order approximation for

?(0) was rather crude. Higher-order solutions for i(n) and (n), obtained
t t

via further iterations, are shown, respectively, in Figures -b to 4d and

Figures 5b to 3d. The rapid convergence and che accuracy, which is verified

by the boundary condition check of the solutions, are well-demonscraced

in these figures. The induced current density J also shows the expectae%.

edge behavior, i.e., it becomes large at the edges as it should for the

Incident i-wave.

Figures 6 and 7 show the solutions for E C and J obtained after

four iterations when the iratings are illuminated by an obliquel7 incident

plante wave with an Incident angle i - 30' and with the q-field polarized
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Figure 3. Free-standing gracing Ulluminated bv a normaly incident
a-wave.
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parallel to the edges of the strip (in the E-wave case). Again, the boundary

conditions are satisfied extremely well by the results, and the anerture

E-field also shows the expected edge behavior for the incident E-wave.

Next we consider the scattering from a free-standing conducting grid

illuminaced by a normally incident plane wave. The geometry of the problem

2is shown in Fig. 8. The aperture area is approximately lOX whereas the

cell area is about 44X2. Th. initial approximation for E is still chosen

to be the truncated incident field, and the dominant component of the

tangential aperture E-field is shown when the incident E-field is polarized

In the 7-direction.

For all the computations in this section, 32 tarms in the Floquet

expansion functions are used in representing the unknown fields along

each of the two dimensions. This leads to 211 equivalent unknowns "o be

solved for. The computation time, however, required for deriving the

solution is quite moderate (5 - 6 secs. of CPU time on the CDC Cyber

175 System). Clearly, any matrix method dealing with such a large number

of unknowns will be totally impractical.
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V. GENERALIZATION TO T'4O-REGION PROBLEM

In this section, the iterative technique is further generalized to

analyze a wider class of geometries. These geometries are characterized

by the feature that they comprise a junction of tvo or more regions of

dissimilar dimensions. An open-region type example is a corrugated surface

which can be thought of as a junction of two regions, viz., the infinite

half-space and a periodic array of short-circuited waveguides. For the

sake of simplicity, a closed-region type problem - a step discontinuity

in a parallel-plate waveguide - is considered in this section. The geometry is

shown in Figure 9. The incident field is a TE mode wave. The formulation of

this problem can be found in the literature, The integral equation is given by

rb  rb
E (z')KCx'x')dx' Eo -(x')K+(xx')dx' - 2H' (8)

for 0 < x < b, z 0

where S Is the unknown aperture E-field,7
a is the Incident H-field,
x

sin " x sin --- X'
(x,x') - s M x s n a

=- a a

mW a2 Z ..z2 air < 2z

,m--

a ) . k2)LI if k' <

aa

and

-j (k-7 (af) 2) 1/2 if k (;>-)r

,a ai 2 2 1/2 i
Lb

98

.. . . . . . . . . .
- --



wh a

F igurs 9. Seep diScon:~u±'y i i a parai.lel-plate :¢avegude
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Note that Equation (8) is defined in the region 0 < x < b. To apply the

iterative technique, it has to be extended to the full range 0 < x < a.

This is achieved by introducing an extra unknown function J(x), and the

extended equation takes the form

a

E7(x')k(x,x)dx' - .x')ex,x')d
' + 8(-2H') + O(J(x)) (9)0 o

for 0 < x < a

where for any function f(x)

9(f(x)) - f(x) if 0 < x < b

- 0 if b < x < a

and

~~(f~x)) -f~x) -(f(x))

A recursion formula relating the (a + ) th order solution Z(n+ ') to the

a solution E can be derived via a procedure similar to that developedy

in Section I1. The formula is

(n+'l). K- .a , (n)

Equation (10) is now solved using an iterative procedure similar to

that developed in Section II1. The integrations in (10) can again be

carried ouc using the FM? because of the characteristic nature of the

kernels. Figure 10 shows the aperture E-field distribution at the

discontinuity. The initial approximation for E is taken to be they

incident field truncated in the aperture.

'he result is obtained in three iterations with 32 expansion functions

used in representing the unknown field. We note that the boundary condition

on £y, viz., that it vanishes at the edges, is satisfied by :he iterated

solution. 100
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VI. CONCLUSION

In this paper, an iterative cechnicue applied in the spectral domain

has been employed to solve the problem of scattering from two-dimensional

periodic structures. Applications of the technique have been illustrated

using a number of examples. This spectral-iteracion technique has been

found to be very efficient for two reasons: (i) it is applied in the

transform domain, where only algebraic operations instead of convolution

integrations are involved, (Ii) the use of the efficient FFT algorithm,

which is employed to carry out the algebraic DFT, is natural to the

proedure. The technique also has a built-in boundary condition check

which verifies the accuracy of the icerated solution - an important feature

mot available in conventional methods. %rthermore, the induced current and

the aperture field are solved for simultaneously which is another unique

advantage not available in other methods. Finally, as mentioned earlier,

this technique is particularly appealing in the high frequency analysis

where the moment method has unsurmountable difficulties and other asymptotic

techniques fail. Before closing, we would like to point out that at the

lower end of the frequency scale the effect of mutual coupling among

adjacent apertures (or conducting strips) becomes significant and

the field distribution in the aperture begins to deviate substantially

from the incident field. Consequently, it becomes difficult to choose

a good initial approximation for the aperture field, particularly the

cross-polarized component, such that a rapid convergence of the

iteration process is ensured. Fortunately, however, an alternative

method also developed by the authors [5] and called the Spectral-
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Galerkin approach, has been found to be well-suited in the low

frequency region. This approach is based on an application of the

Galerkin's method in the spectral domain. It selects the proper

expansion functions which are analytically Fourier transformable

and which satisfy both the boundary and edge conditions for the

unknown fields. It has been shown that the required matrix size is

much smaller than in the conventional schemes and the numerical

computation is very efficient.
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APPENDIX E

A SPECTRAL-ITERATION TECHNIQUE FOR ANALYZING A

CORRUGATED-SURFACE TWIST POLARIZER FOR SCANNING REFLECTOR ANTENNAS

R. Kastner and R. Mittra

ABSTRACT

In this paper we present an analysis of the corrugated-surface twist

polarizer which finds application in the design of scanning reflector

antennas. We employ the spectral-iteration technique, a novel procedure

which combines the use of the Fourier transform method with an iterative

procedure. The first step in the spectral-iteration method is the con-

version of the original integral equation for the interface field into a

form which is suitable for iteration using a method developed previously

[5]-[7]. An important feature of the technique is that it takes advantage

of the DFT type of kernel of the integral equation and evaluates the

integral operators efficiently using the FFT algorithm. Thus, in contrast

to the conventional techniques, e.g., the moment method, the spectral-

iteration approach requires no matrix inversion and is capable of handling

a large number of unknowns. Furthermore, the method has a built-in check

on the satisfaction of the boundary conditions at each iteration.

The work was supported by the Office of Naval Research, Contract
N00014-75-C-0293.
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A SPECTRAL-ITERATION TECHNIQUE FOR ANALYZING A
CORRUGATED-SURFACE TWIST POLARIZER FOR SCANNING REFLECTOR ANTENNAS

I. INTRODUCTION

This paper presents an analysis of the corrugated-surface twist

polarizer, a device which is used to rotate the polarization plane of

an incident wave by 90*. Such a polarizer finds applications in scanned

reflector antenna systems (Fig. I) where a rapid mechanical scanning

is achieved by the movement of the passive, light-weight polarizer [1].

The feed horn radiates a horizontally polarized field, which is reflected

from the "transflector" radome, comprising horizontal strips, onto

the twist polarizer. The twist polarizer is so designed that upon

reflection from the polarizer the horizontally polarized incident wave

is changed into a vertically polarized reflected wave to which the

radome is virtually transparent. Thus, the radome also serves as a

collimating device and the antenna is compact and light weight.

A common type of twist polarizer comprises a set of thin metallic

strips or wires placed on top of a dielectric substrate, which is approx-

imately X/4 thick and is backed by a ground plane [1], [2], [3], [8].

In this paper, we investigate the design of an alternative configuration

which also can be used for rotating the plane of polarization of an

incident wave, viz., the corrugated-surface polarizer. Its basic

mechanism can be explained very simply [41 by noting that if the period

of the grooves is sufficiently small compared to the wavelength, a plane

wave polarized parallel to the grooves will be reflected essentially

from the outer surface of the polarizer, while a vertically polarized

wave will be reflected from the bottom of the grooves, which results in

a differential phase delay corresponding to twice the groove depth.
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Thus, if the incident field were polarized at 450 to the direction of

* the grooves, the horizontal and vertical components would have equal

amplitudes and phases, and a phase difference of 1800 will be produced

by a groove depth of A/4. Unfortunately, the cell size is typically

not small at millimeter waves and the above result is not sufficiently

accurate for designing the polarizer.

The spectral-iteration approach (51, (61, [7], presented herein,

provides a method for efficient and accurate analysis of the corrugated

twist polarizer. Unlike conventional moment-method and mode-matching

techniques, the spectral iteration technique requires no matrix inversion

and, consequently, large cells can be analyzed without any difficulty.

Furthermore, the accuracy of the solution can be conveniently checked

at each stage of the iteration. This is done by determining how well

the solution satisfies the boundary conditions and by verifying the

conservation of energy.
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II. GENERAL FORMULATION

Let the corrugated-surface twist polarizer, shown in Figure 2, be

illuminated by a plane wave with a wave-number B in the x-direction.

Because of the periodic nature of the geometries, phase-shift walls with

period a can be placed in the external region (z > 0) of the structure

and the problem can be reduced to that of solving for the discontinuity

between a waveguide with these phase-shift walls and the short-circuited,

parallel-plate waveguide of width b in the interior region (see Fig. 3).

In two cases, viz., the TE polarization (parallel to grooves) and the

TM polarization (perpendicular to grooves) need to be solved for

individually to obtain the differential phase shift between the two

reflection coefficients. For an incident wave polarized at 45* to the

direction of the grooves, the plane of polarization will be rotated by

90* if the differential phase shift between the two reflection coeffi-

cients is 180*.

The spectral-iteration approach for this problem is based on the

fact that the Green's functions for both the external and internal

regions are expressible in terms of Fourier-type series. Thus, in each

of these two individual regions the integral operator that relates

E- and H-fields is exactly invertible. Denoting the operator for the

external region, which is a cell bounded by the phase-shift walls, by

L_, and the operator for the inner region by L+, we have the general form

L * + L + 2Finc (1)
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in which F iccorresponds to the electric field incident from the outer

*region and p is the unknown magnetic field in the aperture. (If, instead,

the unknown is the electric field in the aperture, then F is replaced by

the incident magnetic field.)
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III. TM POLARIZATION

In order to illustrate the application of the spectral-iteration

technique, we consider the case of the twist polarizer illuminated by a

TM polarized wave. (The TE case is discussed later.) We choose to

be the unknown electric field in the aperture and derive the following

integral equation via the usual formulating procedure of matching the

interface fields.

1o j8n)XI 2j(1 ) incf p(x')e e a dx' +H(x) 2H (x
a /'- T

0 a (2)

where
S b

b I_ _ -(X')cos x' cos - xdx', O<x<b

0(x) 0

h(x) b<x<a

(3)

and I
-JBx,,

H eC) (4)

h(x) is the unknown magnetic field outside the aperture where the

boundary condition on the conducting wall requires q to be identically

zero. For the sake of convenience, we have suppressed the factor -jwp

in H and Hinc. Equation (2) is of the form of (1).
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The operator corresponding to the external region

L (.)+n2 (x'x)

D ( + n - -

0 a

is invertible in the range 0 < x < a, whereas the inner operator

2__ ___ ___1 mir ,' m

L' cos a- x cos - x dx'(.)(6)n+o cotb)2 n0r b b

ot (P))2

has the same property in the range 0 < x < b.

The iterative procedure for solving (2) will now be given:

1. Assume an initial p(x), such that P(x) - 0 in the range

b < x < a.

2. Evaluate L_(4) in the range 0 < x < a via a two-step FFT.

3. Compute 2Hin c - L_4 to obtain H.

4. Evaluate L (H) using a two-step cosine FFT transform

over the portion 0 < x < b to obtain the next estimate for

in the aperture.

5. Add zeros over b < x < a and return to step 2.

It is evident that the procedure requires the evaluation of L- 1 ,

/2 _ir2which in turn requires multiplication by the factor cot(, -(-) d).

This factor becomes small in the neighborhood of d - X/4 and for m - 0

and, hence, presents no difficulties in implementing the iteration

procedure. Had we chosen 4 to be the electric field, a similar iteration

procedure would have required the multiplication by the factor

Il 11



tan(Yk 0d) and the process would have diverged. Thus, it is

important to choose the proper unknown for p when using the iteration

procedure.

The reflection coefficient is computed at each step of the iteration,

and convergence is achieved when its absolute value tends to 1. Since a

reflection coefficient close to +1 is expected, a uniform distribution may

be chosen as an initial guess. It is found that, even with this initial

choice, convergence is attained within three or four iterations.
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IV. TE POLARIZATION

In this case, the magnetic field distribution is chosen as the

unknown O(x). We have the following integral equation:

b j (+t2)x, _ ('2 )x

1a a inc
0 2w1 (x') e e dx' + E(x) 2E W(x)a n f®J k 2 -(8+n )

n- rt+n-)20 a (7)

with

2 W( ~ ob ~ (x') sin x' sin- x 0< x < b

E(x) - (8)

0 b<x<a

and

i n c (x) e- j ax

Ein(7 - (9)
k 2_ 82

0

where a factor jwc has been suppressed from E and Einc. Next we redefine

L_ and L+ in a manner analogous to Equations (5) and (6), and outline

the iterative procedure for solving (7) in the following:

1. Start with an initial guess for 0 (e.g., a uniform distribution

with a corresponding reflection coefficient of -1).

2. Compute L+(*) over 0 < x < b by a two-step FFT sine transform.

3. Add zeros over b < x < a to obtain E over the entire range

0 < x < a and evaluate 2Ein c - E.

4. Compute C of the last result over 0 < x < a and obtain the

next estimate for *(x).

5. Go to step 2.
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For the TE case being considered here, step 2 requires the evaluation I
of L 00), as opposed to the computation of L_() in the TM case. The

+2
evaluation of L-, in turn, requires a multiplication by tan k2 m0rb d.

However, this does not pose a problem since the term m - 0, which diverges I

in the neighborhood of d - X/4, is excluded in the sine transform. The

convergence in the TE case is also attained with a very few iterations.

The use of the FFT procedure, combined with the small number of

iterations needed to attain convergence, result in a considerable saving

of computation time as compared to the conventional mode-matching and

moment-method techniques which require a matrix inversion. Furthermore,

the method can handle unit cells which are either large or small.

Naturally, a larger cell size necessitates the use of an increased number

of samples so that a typical sampling interval of about X/25 is maintained,

and the selection of a wider interval may slow down the convergence. Thus,

for a given program that has fixed dimensions of FFT vectors, i.e., a

fixed number of samples, there is an effective limit to which the frequency

can be increased. However, if the primary quantity of interest is th,!

reflection coefficient, the detailed information derived from a fine

sampling of the aperture is not needed and a smaller number of samples

is sufficient. A technique for improving the convergence for such a case

is described in the next section.
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V. SPEEDING UP THE CONVERGENCE

It should be noted that often the main difference between the approx-

imate 1Pi derived after a few iterations and the exact solution is a complex

factor. One can partly compensate for this difference by multiplying 0p

at every iteration with the variational factor x, where

,inc
X 2F >(10)

<0i, LT>

F is defined in Equation (1) and L - L_ + L +. The factor X, which tends

to unity as approaches the correct value, can be regarded as another

measure of convergence. Although the use of X is of little help when

the convergence is good, the incorporation of this variational factor

does improve the convergence quite significantly for an undersampled4.

More importantly, it also helps to achieve convergence for an otherwise

divergent case when the variational factor is not used. This is

demonstrated in Table 1.

TABLE 1. CONVERGENCE RATES, TE INCIDENCE, 25 SAMPLES

Cell size No. of iterations No. of iterations
(wavelengths) without variational factor with variational factor

.9 and below 4 3

1.1 19 7

1.3 Divergent 13

115



VI. RESULTS

A corrugated-surface twist polarizer was constructed and experimentally

tested. Its duty ratio b/a was 0.5, with a -21 mm, or 0.6A at the center

frequency of 8.5 GHz, and d - 7.62 mm or 0.216X. A comparison between the

computed and measured axial ratios at various frequencies is presented in

Fig. 4 for an incidence angle of 5* Agreement between computations and

measurements appears to be very good, despite an uncertainty of about

t10 in the measurement setup and a slight inclination of the plane of

incidence relative to the direction of periodicity. Interestingly,

when the frequency is increased beyond the grating-lobe bound of about

dNz1 (not shown in Fig. 4), the computation predicts a sudden change

in the axial ratio and the reflection coefficient, whose magnitude is

no longer equal to one. The loss of reflected energy i.n the fundamental

space harmonic is obviously accounted for by a second space harmonic,

or a grating lobe.
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Figure 2. Corrugated Surface Configuration
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Figure 3. A Unit Cell of Corrugated Surface
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